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LETTER TO THE EDITOR 

An exactly soluble two-dimensional Ising model 
with magnetic field 

P Azaria and H Giacomini 
Laboratoire de Magnetisme des Surfaces, Universite Paris 7, 2 place Jussieu, 75251 Paris 
Cedex 05, France 

Received 24 June 1988 

Abstract. An Ising model formulated on a Kagome lattice with anisotropic ferromagnetic 
and antiferromagnetic interactions, and a magnetic field, is found to be exactly solvable 
for arbitrary values of temperature. The magnetic field acts on two of the three sublattices 
of the Kagome lattice. Explicit expressions for the partition function and the critical variety 
of the model are given. 

The two-dimensional Ising model with a magnetic field is a long-standing unsolved 
problem of statistical mechanics. The only exact solutions that present critical 
behaviour for real magnetic fields are the hard-hexagon (Baxter 1980) and the super- 
exchange (Fisher 1960) models. Despite the fact that the latter model is decorated, 
its critical behaviour describes well that of antiferromagnets in a field (Fisher 1960, 
Kaufman 1987). However, there is no frustration in this system and no exact results 
are known for frustrated magnets in a field. It is then important to have exact resu!ts 
for Ising models in a field defined on a regular lattice and which contain frustration. 
This has motivated the present work. 

In this letter an king model in a magnetic field formulated on the Kagome lattice 
( KL) is solved exactly for all temperatures and fields. The KL is one of the four regular 
lattices that tilt the plane in such a way that all sites and bonds are equivalent. Examples 
of interesting realisations of this network include Frank-Kasper layered crystalline 
alloys (Sachdev and Nelson 1985) and also iron atoms in jarosite-type materials 
(Townsend et a1 1986). The model under study is shown in figure l (a) .  We distinguish 
three interpenetrating sublattices, denoted by A, B and C, in such a way that no two 
sites of the same type are adjacent. Interaction 3, (respectively-J,) is taken between 
sites belonging to sublattices A and B (respectively C), while spins of sublattices B 
and C interact through interaction J 2 .  The magnetic field h acts only on sublattices 
B and C: spins of A type have zero magnetic moment. Otherwise stated, the spins of 
B and C type interact, in the vertical direction, through a mediating non-magnetic 
spin, leading to a model for superexchange on the Kagome lattice. Note that one 
recovers the decorated model of Fisher (1960) in the limit J2 = 0. 

The Boltzmann weight associated with the elementary cell (figure l(b)) of the KL 
is as follows: 

WU,,  U29 U,, a 4 ,  U 5 1  

= exp[K,a,(u,+ u4 - U, - u3) + K ~ ( U , U ~ +  u3u4) + ~ H ( u ,  +a2+ a, + u4)] 
(1) 
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Figure 1. ( a )  A part of the Kagome lattice which is divided into three interpenetrating 
sublattices A, B and C. ( b )  An elementary cell of the Kagome lattice showing the Ising 
spins U, associated with each site. The two interaction parameters K ,  and K ,  and the 
reduced magnetic field H are also shown. 

where K i  = J i / k T  ( i  = 1 , 2 ) ,  H = m h / k T ,  T being the temperature, k the Boltzmann 
constant and m the magnetic moment. 

The values of J ,  , J2 and h are arbitrary and one can distinguish two distinct regions 
of the parameter space. When h < 2JI - 23, the ground state ( G S )  is antiferromagnetic 
(where the J ,  and -J1 bonds are satisfied) and two-fold degenerated. For h > 2J1 -2J2  
the GS is paramagnetic with all spins belonging to sublattices B and C parallel to the 
applied magnetic field, leaving the spins of A type free to flip. When h = 25 ,  - 25, the 
G S  is infinitely degenerated, with zero point entropy. 

Notice that, for J2 > 0, the system is frustrated while when J2 < 0 it is unfrustrated. 
It is surprising that the GS structure does not depend on frustration. Moreover, as is 
well known, in zero field the antiferromagnetic Kagome lattice Ising model possesses 
high degeneracy of its GS and as can be seen, when a magnetic field is applied, this 
degeneracy is ruled out except, of course, when h = 2J1 - 2 J 2 .  

The partition function of the model is given by 

where the sum is performed over all spin configurations and the product is taken over 
all elementary cells of a lattice with 3N sites and periodic boundary conditions. Note 
that the partition function is invariant under the reverse of K, and H, independently. 
In order to obtain the exact solution of this model, we employed the same procedure 
used by one of the present authors in deriving an exact result for the KL Ising model 
with a magnetic field acting on all the spins of the lattice (Giacomini 1988). First, the 
KL is decorated by introducing an Ising spin si at the centre of each elementary triangle 
of the lattice as indicated in figure 2 .  The Boltzmann weight (1) can now be expressed 
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Figure 2. The decorated Kagome lattice. Full circles indicate the lsing spins U, of the 
original lattice and open circles represent the decorating king spins s, and s 2 .  The 
interactions M, and M2 between both types of spins are also shown. 

as follows: 

W U , ,  (72, U 3 9  (74, U,)  

= R 2  exp[ sl( M1u3 - Mia4+ M2u5) + s2( M,u, - M1u2 + M,u,) 
(SI&) 

+iH( U1 + a2+ (73 + a4)]. (3) 
The parameters Mi and R are related to the Ki by the well known star-triangle relations 
(see, for example, Syozi 1972) 

cosh(2M,) = cosh(2K,) exp(-2K2) (4) 
cosh(2M2) = 1 - (2 sinh2(2Kl))/[exp(4K2) - 13 ( 5 )  

( 6 )  
The partition function of the KL model can now be expressed in terms of the partition 
function of the decorated model as follows: 

R 2  = f(cosh2(2M,) + sinh2(2M2) + 2 cosh2(2Ml) c0sh(2M~))-”~.  

Z K a g ( K 1 ,  K29 H) = RZNZdec(Mt 3 M2, (7) 
In this way the spins ai become decoupled and can be summed up. After the decimation 
of the spins U,, the resulting system is the Ising model on the honeycomb lattice with 
2 N  sites, interactions L, , L2 and magnetic field H*. Therefore the partition function 
of the KL model is expressed in terms of the partition function of the honeycomb 
lattice model (figure 3): 

ZKag(K1,  K2, H ) = { R ’ A ’ ~ ) ~ ~ h o n e y ( ~ i ,  L,,  H*) (8) 

Figure 3. An elementary cell of the honeycomb lattice showing the interaction parameters 
L ,  and L,.  
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where L ,  , L2, A, B and H *  are given by 

exp(4L,) = cosh(2M, + H) cosh(2Ml - H)(cosh( H))-2 (9a) 

exp(2L2) = cosh(2M2) (96) 
H *  = HI + H2 (10) 

exp(4Hl) = cosh(2M, + H)(cosh(2MI - H))-’ (11) 
exp(4H2) = cosh(-2MI + H)(cosh(2M1 + H))-’ (12) 

A = 2(cosh(2MI + H) cosh(2MI - H) cosh2( H))1’4 (13) 

B = 2 ( c o ~ h ( 2 M ~ ) ) ” ~ .  (14) 

with 

and 

A remarkable result is that, with the choice of the interaction parameters we made, 
the field H *  of the honeycomb lattice vanishes (see (10)-(12)) for arbitrary values of 
K , ,  K 2  and H. Therefore, the KL model given by (1) is equivalent to the honeycomb 
lattice Ising model with interactions L1 and L2 and zero magnetic field (H*  = 0), which, 
as is well known, is exactly soluble. 

On the other hand, when the magnetic field acts on all spins of the KL, there are 
three contributions to the field H *  of the honeycomb lattice, which can be made zero 
only when a tempetature-dependent relation between the parameters of the KL is 
satisfied (Giacomini 1988). 

Returning to the present model, and taking into account ( 6 ) ,  (8), (13) and (14), 
the free energy per spin i,b in the thermodynamic limit is given by 

+ K a g ( ~ l ,  ~ 2 3  H) = ( - k ~ / 3 )  log(R2A2B) + f + h o n e y ( l l ,  ~ 2 ,  H* = 0). (15) 
the explicit expression for GhOney can be found, for example, in Syozi (1972). 

lattice are given in terms of K ,  , K 2  and H, by the following expressions: 
Taking into account (4), ( 5 )  and (9), the interactions L, and L2 of the honeycomb 

exp(2L2) = 1-2 sinh2(2Ki)/[exp(4K2) - 11 

exp(4L1) = 1 + (cosh2(2K,) exp(-4K2) - l)(cosh( H))-2. 
(16) 

(17) 
We are now able to discuss the critical behaviour of the model. As seen from (16) 
and (17), there are two different regions in the parameter space K ,  and K 2 .  

(i) If K 2  < 0, L ,  and L2 are positive; the critical line ofthe corresponding honeycomb 
model is given by 

sinh(21,) = cotanh(L,). (18) 
(ii) If K 2  < 0, when exp(4K2) > cosh(4K,), both L1 and L2 are real, with LlL2  > 0, 

and one has again the critical line (18); when exp(4K2) < cosh(4K,), L, is real but L2 
is complex with L2=  L ; + i ~ / 2  (L; real) and L,Li>O. It can be shown that, in this 
case, the critical line of the corresponding honeycomb model is still given by (18) by 
taking L2 = L;+ir/2.  Therefore, taking into account (16)-(18), the critical line of the 
Kagome lattice Ising model is now given, in terms of the original parameters K i  , K 2  
and H, by the following expression: 

cosh2(H) = ;{ 1 - cosh2(2K,) exp( -4K2) 

+ [(l -cosh2(2K,) exp(-4K2))’ + sinh4(2K,) e~p(-8KJ]”~}.  (19) 
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When K 2  is equal to zero one obtains the critical line of the Fisher model: 

cosh2(H) = sinh2(2K,)/(2+2J2). (20) 

cosh(2K1) a exp(2K2) + [ 1 + e ~ p ( 4 K , ) ] ” ~ .  (21) 

Equation (19) always has a real solution for the critical field if 

When the equality holds in (21), it gives the critical line for H = 0, as can be easily 
deduced from (19). We show in figure 4 the critical lines for two representative regions 
of the parameters: J2 = $J,  (frustrated) and J2 = - f J 1  (unfrustrated). Note the different 
order of magnitude for the critical field of both lines. This can be understood by 
remarking that, in the frustrated region, the ground state is nearer to the paramagnetic 
state than the non-frustrated one because the magnetic field, in our model, acts in the 
same sense as the interaction J2 (when J 2 >  0). As a consequence one needs a smaller 
field to break the long-range order in the former case. 

T 

Figure 4. The critical magnetic field h as a function of the critical temperature T, for the 
case J2 = fJ1 (lower curve) and J2 = -fJ, (upper curve), respectively. 

The model studied above possesses a disorder line with dimensional reduction 
when cosh(2K,)=exp(2K2). In this case the Kagome model is equivalent to the 
honeycomb model with L, = 0 and becomes zero dimensional (see figure 3). It is 
interesting to note that this disorder line does not depend on the magnetic field. 

Before concluding, let us emphasise that one can transform the honeycomb lattice 
Ising model with parameters LI and L2 to another K L  Ising model with new parameters 
K i, K ;  and H’ = 0. Therefore, the exact solubility of the present model is a consequence 
of the fact that one is able to define effective renormalised parameters that are, of 
course, functions of the original parameters on the KL and with a zero effective magnetic 
field. In conclusion, we have found a non-trivial exactly soluble Ising model with a 
magnetic field, defined on a regular lattice and which contains frustration. The complete 
statistical behaviour of this model is now under study and will be published elsewhere. 
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